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of NS5-branes wrapped on a 4-torus and F1-branes smeared on the 4-torus when both types

of branes are located at the same point in their common transverse space. We find a class

of operators that lead to spacetime supersymmetric deformations. It is remarkable that

most of these operators are not chiral primary with respect to the N = 2 superconformal

algebra on the worldsheet. A subset of these worldsheet conformal field theory deformations

admits an interpretation either as a geometric deformation of the brane system or as

a deformation of the distribution of the F1-branes, viewed as smooth instantons, inside

the wrapped NS5-brane worldvolume. The 2-dimensional conformal field theory, however,

seems to lack operators corresponding to arbitrary NS5-brane deformations, in contrast to

pure NS5-brane systems where all geometric deformations can be accounted for by chiral

primary operators.
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1 Introduction

Objects charged under the NSNS antisymmetric tensor field of string theory, i.e. the elec-

trically charged F1-branes and the magnetically charged NS5-branes as well as their bound

states, are of particular importance since the corresponding string theory backgrounds may

in principle admit an exact conformal field theory (CFT) description. In such cases the

physics of these objects is amenable to the powerful methods of CFT.

The most well-known example is that of a configuration of parallel and coincident

NS5-branes. Their backreaction leads to a characteristic throat-like geometry whose near-

horizon limit comprises of a linear dilaton along with a 3-sphere, both of which can be

described in terms of exact CFTs [1]. Another example is provided by a circular distribution

of NS5-branes. This system, after an appropriate T-duality, admits a CFT description in
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terms of the cosets SU(2)/U(1)×SL(2,R)/U(1) [2] and can be thought of as a deformation

of the first configuration that resolves the strong coupling singularity associated with the

linear dilaton [3, 4].

An interesting feature of these systems is that the little string theories (LSTs) that

reside on the worldvolume of the NS5-branes [5] can be described holographically in terms

of the associated CFTs [6]. A fundamental aspect of these holographic dualities is the

existence of a dictionary between deformations of the branes described via perturbations

of the original supergravity solution, parametrized by vacuum expectation values of scalar

fields on the branes, and exactly marginal deformations of the underlying CFT. Such a

dictionary was discussed in detail in [4] and was tested successfully in [7], by matching

directly the supergravity deformations realized in the σ model description of the theory to

CFT operators.

The latter analysis was motivated by earlier work [8] where it was explicitly shown that

the continuous deformation of the circular NS5-brane distribution into an elliptic one was

driven by a marginal perturbation of the SU(2)/U(1)×SL(2,R)/U(1) worldsheet σ model.

The deformation of the circle into an ellipsis is one particular mode among an infinitude

consisting of battered circles with n ∈ N bumps distributed with Zn symmetry around the

original circle. These types of deformations as well as their corresponding CFT operators

based on parafermions provided actually the testing ground for [7].

One interesting aspect of such deformations is related to their supersymmetry prop-

erties. Since they are realized in terms of changes of the transverse distribution of the

branes, they should preserve an amount of supersymmetry and, therefore, this property

should also be manifest in the CFT operators. An analysis in this spirit was performed

in [9] for the case of the pointlike system of branes, whose CFT description involves the

linear dilaton theory Rφ and the SU(2) Wess-Zumino-Witten (WZW) model.

The purpose of the present paper is to analyze aspects of the interplay between space-

time deformations and the corresponding marginal CFT operators, in particular with re-

spect to their supersymmetry properties, in a third example of a system with a known

exact CFT description. This system is comprised of a set of NS5- and F1-branes located at

the same point in their common transverse space with four of the Euclidean worldvolume

directions of the NS5-branes wrapped on a 4-torus, along which the F1-branes are smeared

homogeneously. In the near-horizon limit it features a constant dilaton and a geometry

of the form AdS3 × S3 × T
4 supported by appropriate NSNS 3-form fluxes. The exact

CFT description is provided by the product of WZW models SL(2,R) × SU(2) along with

four free compact bosons U(1)4 corresponding to T
4. Notice that the analogue of LST in

this case is a 2-dimensonal CFT residing on the boundary of AdS3 which is known to be

a deformation of a symmetric orbifold theory. This theory arises as the infrared limit of

the super-Yang-Mills theory that lives on the common (1 + 1)-dimensional non-compact

worldvolume of the branes. In order to avoid any confusion, we emphasize that in this

paper CFT will always mean the worldsheet theory underlying the F1-NS5-brane system

and not the CFT on the boundary of the AdS3.

We will start by uncovering the CFT operators dual to some simple deformations of the

brane system. Subsequently, we will perform a full-fledged analysis of the supersymmetry

– 2 –
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properties of a large class of marginal operators in the SL(2,R) × SU(2) × U(1)4 theory.

Some of the operators we study have been analyzed in the context of the AdS3/CFT2

duality starting from [10]. The most interesting aspect of this analysis stems from the fact

that for backgrounds of this type, i.e. which feature timelike curved geometries, and as op-

posed to the case of Minkowski spacetime [11], the existence of spacetime supersymmetry

is not tight to N = 2 superconformal (SCFT) invariance on the worldsheet [12]. There-

fore, the set of chiral (or antichiral) primaries, which preserve automatically the N = 2

SCFT symmetry, provides only a small subset of the operators that can lead to spacetime

supersymmetric deformations.

This observation should be compared to what happens for the first two systems men-

tioned here. Those comprise only of NS5-branes and consequently time is a non-intracting

factor in the sigma model. The N = 2 superconformal algebra is realized in a conventional

(hermitian) manner and the set of chiral and antichiral primaries captures precisely all

possible geometric brane deformations [7, 9]. This no longer holds in the NS5/F1 system

under investigation, where we will uncover, among others, a new class of operators whose

effect on the branes is to perturb the originally homogeneous distribution of the F1-branes

inside the NS5-branes. In other words, if we view the F1-branes as smeared instantons in

the NS5-brane theory, turning on these operators corresponds to infinitesimal motions in

the instanton moduli space.

The layout of this paper is as follows. We start in section 2 with a supergravity

analysis of general F1-NS5-brane systems and discuss the exact CFT description of the

pointlike setup as well as certain deformations thereof. In this section we also present

the CFT operators that correspond to the deformations we have performed. In section 3

we review the construction of the spacetime supercharges of the undeformed AdS3 × S3

and subsequently we uncover the set of chiral and antichiral primaries of the worldsheet

CFT as well as a large class of spacetime supersymmetry preserving operators. We discuss

several issues pertaining to the potential interpretation of those operators in terms of

brane deformations. Finally, in the last section we extend our analysis to a more general

class of operators and we provide the brane description of a class of them that lead to

supersymmetric deformations. In the appendices we have summarized our conventions on

the SU(2) and SL(2,R) WZW models and we have provided the explicit realization of the

N = 2 superconformal algebra employed in the analysis of the chiral primaries.

2 F1-NS5-brane configurations

In this section we study the F1-NS5-brane system from the supergravity and exact con-

formal field theory description view points. In particular, we perform certain symmetric

perturbations around the point where the exact CFT description is known and describe

them in terms of WZW primaries and currents of the associated CFTs.

2.1 Generic 1/4 supersymmetric configurations

Our starting point is a 10-dimensional background metric of the form

ds2 = H−1
1 (−dt2 +dz2)+H5dx

idxi+dyadya , i, a = 1, 2, 3, 4 , H1,5 = H1,5(x) , (2.1)
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which for appropriate choices of the functions H1,5(x) represents the gravitational backre-

action of a large collection of F1- and NS5-branes. The worldvolume of the F1-branes is

spanned by zµ = (t, z), µ = 0, 1, while that of the NS5-branes by zµ = (t, z) and ya. We

will assume that the 4-dimensional part of the NS5-brane worldvolume parametrized by ya

is wrapped on a flat 4-torus T
4. Therefore both types of branes share a (1+1)-dimensional

non-compact worldvolume parametrized by zµ.

The coordinates xi parametrize the common transverse space and are non-compact.

Notice that since we assume thatH1 depends only on xi but not on the additional transverse

coordinates of the F1-branes ya, the latter are effectively smeared homogeneously on the

4-torus. The geometry is supplemented by a dilaton field Φ = Φ(x) as well as an NSNS 3-

form field strength whose non-vanishing components are Hijk and Htzi. These are sourced,

respectively, by the NS5- and F1-branes.

We can choose an orthonormal frame

eµ = H
−1/2
1 dzµ , ei = H

1/2
5 dxi , (2.2)

from which we compute the spin connection with non-vanishing elements

ωij = −1

2
H−1

5 ∂[iH5dx
j] , ωµi = −1

2
H

−3/2
1 H

−1/2
5 ∂iH1dz

µ . (2.3)

The Killing spinor equations arising by setting to zero the gravitino and dilatino super-

symmetry variations are

∂µǫ+
1

4

(

ωabµ − 1

2
Hµ

ab

)

Γabǫ = 0 ,

Γµ∂µǫ−
1

12
HµνρΓ

µνρǫ = 0 .

(2.4)

In addition, we have to satisfy the equations of motion

Rµν −
1

4

(

H2
)

µν
+ 2DµDνΦ = 0 ,

Dµ

(

e−2ΦHµ
νρ

)

= 0 .
(2.5)

From the dilatino equation we find the projections

Γtzǫ = ǫ , Γ1234ǫ = −ǫ , (2.6)

where the first refers to the common worldvolume directions of the F1- and NS5-branes,

while the second to the common transverse directions. These conditions reduce the amount

of preserved supersymmetry to 1/4 of the original one. Therefore, for type II superstring

theories we obtain, in the generic case, backgrounds which preserve 8 supersymmetries.

From the gravitino equation we deduce the form of the antisymmetric tensor field

strength (all indices below are curved)

Htzi = ∂iH
−1
1 , Hijk = ǫijk

l∂lH5 , (2.7)
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where the index is raised with the flat metric in R
4. The form of the Killing spinor is

ǫ = H
−1/4
1 ǫ0, with ǫ0 being a constant spinor subject to the same projections as (2.6).

These results, in combination with the dilatino equation, restrict the form of the dilaton to

e−2Φ =
H1

H5
. (2.8)

Finally, the Bianchi identity dH = 0 requires that H5 is a harmonic function, while it

imposes no condition on H1. The latter, however, must also be a harmonic function in

order that the equations of motion are satisfied. Therefore we get

∂i∂
iH1,5 = 0 . (2.9)

The general solution of those equations is obtained from the (unit-normalized) densities

ρ1,5(x) of F1- and NS5-branes as

H1,5(x) = c1,5

∫

R4

dx′ ρ1,5(x
′)

|x − x′|2 , (2.10)

where c1 = g2
sα

′3N1/V4 and c5 = α′N5. The numbers N1,5 correspond to the total elec-

tric and magnetic NSNS charge. We focus on the near-horizon region of the branes and

thereby we have dropped the constant term that in principle we could have added to the

harmonic functions.

2.2 NS5- and F1-branes at a point, supersymmetry enhancement and exact

CFT

The simplest configuration we can consider is that where both types of branes reside on

the same point xi = 0 in their common transverse space. Then

H5 =
c5
r2
, H1 =

c1
r2
, (2.11)

where r2 = xixi.

This configuration is particularly interesting for two reasons. First, the preserved su-

persymmetry is enhanced to 16 supercharges. This is basically due to the conformal flatness

of the 6-dimensional non-trivial part of the 10-dimensional background and analogous to

the supersymmetry enhancement that occurs when we probe the near horizon region of a

D3-brane, where the original 16 supersymmetries are enhanced to 32.

Second, it is easy to see that the metric (2.1) and the antisymmetric-tensor field

strength (2.7), after a change of coordinates r = eφ and appropriate rescaling of t and

z, take the form

ds2 = α′N5

(

e2φ(−dt2 + dz2) + dφ2 + dΩ2
3

)

+ dyidyi ,

H = 2α′N5 (VolAdS3
+ VolS3) ,

(2.12)

which describes the geometry of AdS3 × S3 × T
4, supported by appropriate NSNS fluxes.

Along with the 3-form field strengths, this background admits an exact CFT description

– 5 –
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in terms of the WZW models SL(2,R) × SU(2) and 4 free compact bosons U(1)4 corre-

sponding to T
4. As is evident from (2.12) the level of both cosets is set by N5, while the

number of F1-branes N1 appears only in the value of the 6-dimensional string coupling

(the constant dilaton)

g2
s =

N5

N1
. (2.13)

2.3 NS5-branes on a circle and F1-branes at a point

2.3.1 Identification of the marginal operators

For a system of NS5-branes it is known that besides the pointlike configuration, which

admits an exact CFT description in terms of a linear dilaton Rφ theory and the SU(2)

WZW model [1], another system that admits an exact CFT description is that of a circular

distribution. The corresponding CFT, after an appropriate T-duality, is an orbifold of the

product of the coset models SL(2,R)/U(1) × SU(2)/U(1) for the transverse space, times

free bosons for the directions longitudinal to the NS5-branes [2].

An interesting way of thinking about the circular distribution is as a small deformation

of the original pointlike setup. In CFT terms we can think of the deformed model as arising

from an exactly marginal deformation of the original Rφ × SU(2) theory [3, 4]. We would

like to maintain this point of view and study the system of NS5-branes on a circle, this time

in the presence of the F1-branes, as a deformation of the original SL(2,R)×SU(2)×U(1)4

theory that describes the setup where all branes reside at a single point.

Therefore, let us take the centers of the NS5-branes distributed on an N5-polygon

situated in the plane spanned by x3 and x4 inside the space transverse to the branes.

We have

~xp = r0(0, 0, cos φp, sinφp) , φp = 2π
p

N5
, p = 0, 1, . . . , N5 − 1 . (2.14)

This distribution of branes preserves an SO(2)× ZN5
subgroup of the original SO(4) sym-

metry that is exhibited by the point-like setup. In the continuum limit the branes are

distributed on a ring of radius r0 situated in the (34)-plane and the symmetry subgroup

becomes continuous, i.e. SO(2) × SO(2). After changing variables as [2]

x1 = r0 sinh ρ cos θ cos τ , x2 = r0 sinh ρ cos θ sin τ ,

x3 = r0 cosh ρ sin θ cosψ , x4 = r0 cosh ρ sin θ sinψ ,
(2.15)

with ranges

0 6 ρ <∞ , 0 6 θ <
π

2
, 0 6 ψ, τ < 2π , (2.16)

we find that the flat metric on R
4 takes the form

dxidxi = r20
[

(sinh2 ρ+ cos2 θ)(dρ2 + dθ2) + sinh2 ρ cos2 θ dτ2 + cosh2 ρ sin2 θ dψ2
]

,

(2.17)

while the harmonic function describing the circular distribution of NS5-branes reads

H5 =
c5

√

(x2
1 + x2

2 + x2
3 + x2

4 + r20)
2 − 4r20(x

2
3 + x2

4)
=

c5/r
2
0

sinh2 ρ+ cos2 θ
. (2.18)

– 6 –
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Instead, since the F1-branes are all located at the origin, we have

H1 =
c1
r2

=
c1/r

2
0

sinh2 ρ+ sin2 θ
. (2.19)

Then, the 6-dimensonal part of the background is1

ds26 = (sinh2 ρ+ sin2 θ)(−dt2 + dz2) + dρ2 + dθ2 +
tan2 θdψ2 + tanh2 ρdτ2

1 + tan2 θ tanh2 ρ
,

Btz = sinh2 ρ+ sin2 θ , Bτψ =
1

1 + tan2 θ tanh2 ρ
, (2.20)

e−2Φ =
N1

N5

sinh2 ρ+ cos2 θ

sinh2 ρ+ sin2 θ
.

Asymptotically, for ρ→ ∞, this background approaches AdS3 ×S3 which corresponds

to the pointlike configuration discussed in subsection 2.2. The leading-order corrected

metric, due to the circular distribution of the NS5-branes, is

ds26 = dρ2+e2ρdx+dx−+dΩ2
3+4e−2ρ(sin4 θdψ2−cos4 θdτ2)−2 cos 2θdx+dx−+· · · , (2.21)

where we introduced null coordinates x± = z±t
2 . The corresponding expression for the

antisymmetric tensor is

Bτψ = cos2 θ + 4e−2ρ cos2 θ sin2 θ + · · · , Bx+x− =
1

2
e2ρ − cos θ + · · · . (2.22)

The first term in the deformation of the metric as well as the deformation of Bτψ
originate from

e−2ρJ3J̄3 ∼ Φsl
0;−1,−1J

3J̄3 , (2.23)

where Φsl
0;−1,−1 is the normalizable branch of the identity operator in SL(2,R) with con-

formal dimension 0 and J3, J̄3 are the Cartan currents of SU(2).2 This is in direct analogy

with the deformation of the linear dilaton Rφ theory times the SU(2) WZW model that

perturbs a system of pointlike NS5-branes towards a small circle [9].3 Notice that in both

systems (F1-NS5 and pure NS5), we could use the genuine identity operator instead of the

normalizable dimension-zero one, but the corresponding marginal deformation driven by

J3J̄3 would not be related to any brane displacement.

The second term in the deformation of the metric as well as the deformation of Bx+x−

resides in the SL(2,R) sector of the original CFT. We can find the corresponding CFT

operator by using the relations in appendices A and B. It reads

− cos 2θe−4ρ K+K̄+ ∼ −Φsu
1;0,0Φ

sl
1;−2,−2 K

+K̄+ . (2.24)

1As in the pointlike case we can get rid of factors of gs, N1, V4 and r0 by rescaling t and z. We will also

omit the universal factor α′N5 to avoid cluttering of the formulas and stick to these conventions for the

rest of the paper.
2The explicit semiclassical expressions for all WZW currents and operators that we use, can be found

in appendices A and B.
3 In that case we have a perturbation of the form e−qφJ3J̄3. By taking into account the background

charge −q/2 of a canonically normalized boson, the conformal dimension of e−qφ is zero.

– 7 –
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Notice that due to the fact that the quantum numbers of Φsl
1;−2,−2 correspond to the highest

weight state of the negative discrete series, its OPEs with K+ and K̄+ are regular and

there is no normal-ordering ambiguity for the SL(2,R) operators.

To summarize, the deformation of SL(2,R) × SU(2) that corresponds to a circular

configuration of NS5-branes with the F1-branes still sitting at a point, takes the form

Φsl
0;−1,−1J

3J̄3 − Φsu
1;0,0Φ

sl
1;−2,−2 K

+K̄+ . (2.25)

We can easily see that both of these operators are marginal.

2.4 NS5-branes at a point and F1-branes on a circle

A configuration complementary to the one studied in the previous subsection is that of NS5-

branes residing at a point with the F1-branes put on a circle. In this case the appropriate

coordinate system, i.e. that in which the deformation is manifestly marginal, is actually

x1 = r cos θ cosφ , x2 = r cos θ sinφ ,

x3 = r sin θ cos τ , x4 = r sin θ sin τ , (2.26)

and the relevant harmonic functions are now given by

H1 =
1

√

(r2 + 1)2 − 4r2 sin2 θ
, H5 =

1

r2
. (2.27)

Performing the same expansion as before yields the leading deformation corresponding

to this background with respect to the unperturbed system where both sets of branes lie

at a point. The deformation contains only SL(2,R) currents and reads

cos 2θ ∂x+∂̄x− = Φsu
1;0,0Φ

sl
1;−2,−2 K

+K̄+ . (2.28)

Notice that this differs just by an overall sign from the SL(2,R) deformation that appeared

in the previous example. Therefore, if we put both types of branes on circles of the same

size, the total deforming operator will be Φsl
0;−1,−1J

3J̄3. As we already pointed out, this is

analogous to the Rφ×SU(2) operator that deforms the system of NS5-branes from a point

into a small circle [9]. Here, we see that this deformation treats both NS5- and F1-branes

on an equal footing since it corresponds to putting on a circle of the same radius both

types of branes simultaneously.

2.5 Elliptical deformations

We have seen so far that the SU(2) primary Φsu
1;m,m̄ has appeared with m = m̄ = 0. The

reason for that is that a circle deformation of either type of branes preserves the SO(2)

symmetry associated with the plane where the deformation takes place. Hence, we expect

that a generic planar deformation will break this isometry and trigger SU(2) primaries with

m, m̄ 6= 0. To be concrete, let us consider a small elliptical deformation of the F1-branes,

as described by

(x1)2 + (x2)2 = ǫ2 cos2 ψ . (2.29)

– 8 –
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The corresponding deformation of the harmonic function H1 away from its point-like limit

is, to leading order

δH1 ∼ 1

r4
(cos 2θ + cos2 θ cos 2φ) =⇒ δH−1

1 ∼ cos 2θ + cos2 θ cos 2φ . (2.30)

This can be written in terms of WZW primaries and currents as

(cos 2θ + cos2 θ cos 2φ) ∂x+∂̄x− ∼ (Φsu
1;0,0 + Φsu

1;1,1 + Φsu
1;−1,−1)Φ

sl
1;−2,−2 K

+K̄+ . (2.31)

The first term gives rise to a perturbation that is the same as (2.28) corresponding to the

circular deformation of the F1-branes. The other-two terms describe precisely the breaking

of the U(1) symmetry due to the elliptical deformation and come on equal footing to ensure

the reality of the perturbation.

3 Supersymmetric deformations of the SL(2, R) × SU(2) theory

We will now proceed with a systematic scan of all operators that can trigger supersymmetric

deformations of the original theory. For this purpose, we use worldsheet CFT techniques.

As already mentioned in the introduction, spacetime supersymmetry does not require in

the present framework N = 2 superconformal invariance, which turns out to be preserved

only for a subset of the deformations.

3.1 Spacetime supersymmetry of AdS3 × S3 background

All the configurations of the previous section preserve at least 1/4 of supersymmetry and

therefore, if embedded in type II superstrings, they should maintain 8 supersymmetries.

The special system where both types of branes are at the same point exhibits actually

supersymmetry enhancement and preserves 16 supersymmetries. This matches the number

of spacetime supercharges constructed in the AdS3 ×S3 σ model, as we will review shortly

following [12]. Subsequently, we would like to establish that the deformations we found in

the previous section preserve 8 supercharges, in accordance with the analysis of the Killing

spinor equations that we have performed there.

It is standard lore in string theory that spacetime supersymmetry is tied to the ex-

istence of extended worldsheet supersymmetry. However, the fact that we deal here with

a curved timelike background, due to the AdS3 factor in the metric, invalidates the usual

argument due to [11], which refers to a Minkowski spacetime, and one has to follow a differ-

ent procedure. The approach of [12] was to construct the spacetime supercharges directly,

i.e. without employing the underlying N = 2 supeconformal symmetry, and explicitly ver-

ify their BRST invariance. We will proceed here in a similar fashion and further discuss

the appearance and the role of an N = 2 superconformal algebra in section 3.2.

In order to construct the spacetime supercharges we should first bosonize the fermions

of the theory. The fermions ψ±, χ± and χ3, ψ3 are bosonized in terms of three canonically

normalized scalars fields. In order to capture all fermions, including the partners of the

T
4, we will introduce five bosons Hi, i = 1, . . . , 5, obeying

Hi(z)Hj(w) = −δij log(z − w) , i, j = 1, 2, . . . , 5 . (3.1)
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Recall that for a scalar field with canonical normalization we have

eiaH(z)eibH(w) = (z − w)abei[aH(z)+bH(w)] , (3.2)

where normal ordering is implied. Then, we have

ψ± = e±iH1 , χ± = e±iH2 , ψ3 =
eiH3 + e−iH3

√
2

, χ3 =
eiH3 − e−iH3

√
2

. (3.3)

Correspondingly, we have the currents

ψ+ψ− = i∂H1 , χ+χ− = i∂H2 , ψ3χ3 = −i∂H3 . (3.4)

The expression for χ3 reflects the fact that its norm is negative. The fermions λa, a =

1, . . . , 4 of the T
4 are bosonized in a standard fashion as

λ̂± :=
1√
2
(λ1 ± iλ2) = e±iH4 , λ̃± :=

1√
2
(λ3 ± iλ4) = e±iH5 . (3.5)

Notice that H†
1,2,4,5 = H1,2,4,5 while H†

3 = −H3.

The supercharges take the usual form

Q =

∮

dze−
ϕ

2 e
i
2

P5
i=1 ǫiHi , (3.6)

with ǫi being ±1 and ϕ being the bosonized superghost. The allowed values of ǫi are

constrained due to the requirement of mutual-locality, which demands

5
∏

i=1

ǫi = 1 , (3.7)

and BRST invariance, which further dictates

3
∏

i=1

ǫi = −1 . (3.8)

It is fairly straightforward to see why the first condition is necessary.

The second condition comes out as follows. The BRST charge contains a termQBRST =

· · · + γG1 + · · · , where γ is one of the superghosts and the N = 1 supercurrent G1 =
1√
2
(G+ +G−) contains the cubic terms

G1
3−Fermi = ψ+ψ−ψ3 − χ+χ−χ3 ∼ (∂H1 − ∂H2)e

iH3 + (∂H1 + ∂H2)e
−iH3 , (3.9)

as can be found from the realization (C.2). These terms can give poles of order O(z−3/2)

and O(z−1/2) in their OPE with the supercharges. Since the OPE of the superghost γ with

e−
ϕ

2 is of order O(z1/2), the only potential problem comes from the O(z−3/2) poles, which

therefore should cancel out. Explicitly, we find that the OPE

G1
3−Fermi(z) e

i
2
[ǫ1H1(w)+ǫ2H2(w)+ǫ3H3(w)] , (3.10)
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is proportional to
ǫ1 − ǫ2
z − w

(z − w)
ǫ3
2 +

ǫ1 + ǫ2
z −w

(z − w)−
ǫ3
2 . (3.11)

Therefore, if ǫ3 = 1 we need ǫ1 + ǫ2 = 0 to cancel the O(z−3/2) pole from the second term

and vice versa if ǫ3 = −1, i.e. we obtain condition (3.8).

Summarizing, the allowed supercharges are

Q1± = e
i
2
[−H1−H2−H3±(H4−H5)] ,

Q2± = e
i
2
[−H1+H2+H3±(H4−H5)] ,

Q3± = e
i
2
[H1+H2−H3±(H4−H5)] ,

Q4± = e
i
2
[H1−H2+H3±(H4−H5)] .

(3.12)

These are 8 supercharges and along with the contribution from the antiholomorphic sec-

tor we obtain in total 16 supercharges, which matches the number of supersymmetries

preserved by the dual brane system.

3.2 Chiral primaries

Before proceeding with the analysis of the various supersymmetric deformations and pre-

served spacetime supercharges (section 3.3), we would like to pause and discuss the adver-

tized superconformal symmetry.

In a theory with N = 2 superconformal symmetry one can obtain a class of worldsheet

supersymmetry-preserving marginal deformations by considering the chiral (and antichi-

ral) primary operators. Since, however, for the backgrounds of interest the existence of

spacetime supersymmetry is not tied to the N = 2 worldsheet supersymmetry, one should

not restrict to chiral primaries. As we will see below, the deformations originating from

chiral primaries are indeed a small subset of the class of deformations preserving space-

time supersymmetry.

The reader might be puzzled by the above statement, referring to an N = 2 super-

conformal algebra, which is not expected to be realized in Lorentzian backgrounds. In the

σ model under consideration, however, a non-hermitian realization of such an algebra is

available and displayed in appendix C. It can be understood as follows: The non-trivial

part of the worldsheet theory is the factor SL(2,R) × SU(2), which can be further decom-

posed as SL(2,R)
U(1) × SU(2)

U(1) × U(1) × R. The coset factor SL(2,R)
U(1) × SU(2)

U(1) provides a genuine

N = 2 (even N = 4) superconformal algebra — the one present e.g. in the circular NS5-

brane distribution — whereas the lightcone factor U(1) × R is presumably responsible for

the lack of hermiticity. For our purposes, it is obviously natural to use the primaries and

currents of the SL(2,R) and SU(2) WZW models. Any further reference to the N = 2

algebra should be understood in those terms.

Returning to our analysis we would like to use the chiral primary operators as su-

persymmetric seeds for marginal deformations so that we will focus on those that have

conformal dimension h = 1/2. Subsequently, their R-charge should be Q = ±1. A quite
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broad class of operators with h = 1/2 has the following form4

Φsu
j;mΦsl

j;m′Y , (3.13)

where Φsu
j;m,Φ

sl
j;m′ are affine primaries of the bosonic subalgebra of the full affine algebra

of the super-WZW models and Y is any of the fermions of the theory. In this section we

will actually restrict our analysis to the case where Y is a fermion in the SU(2) or the

SL(2,R) WZW models, since these operators are most relevant for the applications we

have in mind, and we will consider the additional case where Y is a fermion from T
4 in the

next section. As usual we have suppressed the antiholomorphic indices in order to avoid

unnecessary cluttering of the formulas. We hasten to add that for non-unitary CFTs the

relation h = Q
2 is a necessary but not a sufficient condition for an operator to be chiral

primary. Therefore, we can use it to restrict the possibilities, but we should still check

explicitly if the operators we obtain are actual chiral primaries.

We start by noticing that under the U(1) R-current (C.3), ψ3±χ3 have charges Q = ∓1.

Instead, the other fermions have also a contribution from the fermionic part inside J3
T or

K3
T. Therefore, if we use these fermions we should appropriately adjust m and m′ in order

to have vanishing J3
T +K3

T charge and just obtain Q = ±1 from the other fermionic terms.

The same is true of course when the fermion is ψ3 ± χ3, where we should ensure that

m+m′ = 0.

Therefore, we conclude that we have the following three classes of potential chiral

primary operators

Φsu
j;mΦsl

j;m′χ+ , m+m′ + 1 = 0 ,

Φsu
j;mΦsl

j;m′ψ− , m+m′ − 1 = 0 , (3.14)

Φsu
j;mΦsl

j;m′(ψ3 − χ3) , m+m′ = 0 .

Similarly we have a complementary set of potential antichiral operators with the appropri-

ate fermions. So far these results do not depend on the particular values of m and m′ or on

the branch we choose for the SL(2,R) primary. However, checking explicitly the chirality

of these operators by computing their OPEs with G+, reveals that, like the situation en-

countered in [9], only for specific charges m and m′ and specific branches these operators

are actually chiral primary.

From the first two classes we find that only Φsu
j;jΦ

sl
j;−j−1χ

+ and Φsu
j;−jΦ

sl
j;j+1ψ

− are

chiral primary. It is worth noticing that, had we considered the non-normalizable pri-

mary of SL(2,R) we would have found that the operator fails to be either primary or chi-

ral. The purely bosonic pieces of the corresponding deformations are K+Φsu
j;jΦ

sl
j;−j−1 and

4 We will focus mostly on normalizable operators in the SL(2, R) model, since these correspond to

deformations of the brane system. In other words by Φsl
j;m we mean the normalizable version of the operator

with conformal weight ∆ = −j(j + 1)/k. Recall that to each such conformal weight in SL(2, R) there are

associated two values of j related by reflection j ↔ −j − 1. The two values correspond to the normalizable

and non-normalizable branch of the corresponding operator. For instance, the non-normalizable identity

operator with ∆ = 0 has j = −1, m = 0 and is annihilated by all SL(2, R) currents, in other words Φsl
−1;0 ≡ 1.

This is the analogue of 1 in the linear dilaton theory. Instead, the operator with j = 0 is its normalizable

version and the edge states of the two discrete representations with m = ±1 correspond to e−qφ in the

linear dilaton theory (see also comment in footnote 3).
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J−Φsu
j;−jΦ

sl
j;j+1 respectively and they have vanishingR-charge as expected. Obviously a sim-

ilar story holds for the antichiral operators which read Φsu
j;−jΦ

sl
j;j+1χ

− and Φsu
j;jΦ

sl
j;−j−1ψ

+,

and which give rise to the deformations K−Φsu
j;−jΦ

sl
j;j+1 and J+Φsu

j;jΦ
sl
j;−j−1. There are no

normal-ordering ambiguities since the primaries of the SU(2) and SL(2,R) WZW theories

that appear correspond to edge states of the spin j representations and are annihilated

by the associated, with the perturbation current, operators. From the third class only the

operator ψ3 − χ3 is chiral primary and leads to the deformation J3 −K3. Notice that this

last operator is actually non-normalizable in SL(2,R).

To summarize, the chiral primaries of the theory are

Φsu
j;jΦ

sl
j;−j−1χ

+, Φsu
j;−jΦ

sl
j;j+1ψ

−, ψ3 − χ3 (3.15)

and similarly the antichiral primaries are

Φsu
j;−jΦ

sl
j;j+1χ

−, Φsu
j;jΦ

sl
j;−j−1ψ

+, ψ3 + χ3 . (3.16)

3.3 Spacetime supersymmetric deformations

We note that some of the deforming operators uncovered in the section 2 do not originate

from the chiral primaries found above. For instance, consider Φsu
1;0,0Φ

sl
1;−2,−2 K+K̄+ in

(2.25) coming from the seed operator Φsu
1;0,0Φ

sl
1;−2,−2 χ

+χ̄+. The latter does not have the

proper SU(2) charge to be a chiral primary. Since, however, the deformations arising from

chiral primaries are guaranteed to preserve only the N = 2 worldsheet supersymmetry, but

not spacetime supersymmetry and, in any case, the N = 2 does not seem to be tied to the

existence of spacetime supersymmetry, we should check directly how many of the original

supercharges are conserved by a very general class of deformations. Our findings will be

in full consistency with the results of the section 2, which were based on supergravity.

Fermions in the SL(2, R): we will consider a general ansatz for a seed operator of the

type studied in [10], with form

AΦsu
j;nΦ

sl
j;m+1χ

− +BΦsu
j;nΦ

sl
j;mχ

3 + CΦsu
j;nΦ

sl
j;m−1χ

+ . (3.17)

Notice that we will restrict ourselves only to NS sector operators. For certain values of

A,B,C, corresponding to Clebsch-Gordan coefficients, this operator belongs to an irre-

ducible representation with spin j + 1 of the SL(2,R) generated by the total currents Ki
T.

Acting on it with the N = 1 supercurrent G1 and collecting the residues of the first order

pole yields the actual deformation. The latter consists of the purely bosonic piece

AΦsu
j;nΦ

sl
j;m+1K

− +
√

2BΦsu
j;nΦ

sl
j;mK

3 + CΦsu
j;nΦ

sl
j;m−1K

+ , (3.18)

as well fermion bilinears.

It is obvious that all spacetime supercharges (3.12) commute with the purely bosonic

piece of the deformation and potential obstructions result from the fermion bilinear pieces.

– 13 –
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Grouping the latter according to the bosonic primaries they contain, since different pri-

maries do not interfere with each other, we have:

(j + n)CΦsu
j;n−1Φ

sl
j;m−1ψ

+χ+ ,

Φsu
j;nΦ

sl
j;m−1

(

(

B(−1 − j +m) +
√

2Cm
)

χ+χ3 +
√

2Cnψ3χ+
)

,

(j − n)CΦsu
j;n+1Φ

sl
j;m−1ψ

−χ+ ,

(j + n)BΦsu
j;n−1Φ

sl
j;mψ

+χ3 ,

Φsu
j;nΦ

sl
j;m

(

(
√

2B −A(j −m) − C(j +m)
)

χ+χ− +
√

2Bnψ3χ3
)

, (3.19)

(j − n)BΦsu
j;n+1Φ

sl
j;mψ

−χ3 ,

(j + n)AΦsu
j;n−1Φ

sl
j;m+1ψ

+χ− ,

Φsu
j;nΦ

sl
j;m+1

(

(

B(1 + j +m) +
√

2Am
)

χ−χ3 +
√

2Anψ3χ−
)

,

(j − n)AΦsu
j;n+1Φ

sl
j;m+1ψ

−χ− .

The term in the 5th line is a current and its action on any supercharge has always a pole

since all supercharges contain H2 and H3. The condition it leads to is

(
√

2B −A(j −m) −C(j +m)
)

ǫ2 −
√

2Bnǫ3 = 0 . (3.20)

In total we have 15 fermion bilinears. We present in the table below the result of the

action of the fermion bilinears on the supercharges5 where a tick means that the supercharge

commutes with the bilinear. We have excluded the current terms ψ+ψ−, χ+χ− and ψ3χ3

since they do not commute with any supercharge.

ψ+χ+ χ+(ψ3, χ3) ψ−χ+ ψ+(ψ3, χ3) ψ−(ψ3, χ3) ψ+χ− χ−(ψ3, χ3) ψ−χ−

Q1 Q3 Q2
√

Q3
√ √ √ √

Q2
√ √ √

(Q3,−Q3)
√

Q4 (Q1,−Q1)
√

Q3
√ √ √ √

Q2
√

Q4 Q1

Q4
√

(Q3,−Q3) Q2
√

(Q1,−Q1)
√ √ √

Let us now analyze the conditions for preserving at least 4 supercharges, for instance

Q2± and Q3±. Then we get the six conditions

(j ± n)A = 0 , (j ± n)B = 0 , (1 + j +m)B +
√

2Am = 0 , nA = 0 , (3.21)

plus two more from (3.20) corresponding to Q2± (with ǫ2 = ǫ3 = 1) and Q3± (with

ǫ2 = −ǫ3 = 1). Except for the case j = n = 0 the only solution is A = B = 0. From

the current condition C(j + m) = 0 and since C 6= 0 with obtain eventually m = −j.
Therefore the seed operator that leads to a deformation preserving 4 supercharges, from

the holomorphic sector, is Φsu
j;nΦ

sl
j;−j−1χ

+. Similarly the operator Φsu
j;nΦ

sl
j;j+1χ

− preserves

the complementary set of supercharges Q1± and Q4±. Furthermore, it is straightforward

5In the table we suppress the indices ± from the supercharges to avoid cluttering.
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to check that there are no other combinations of supercharges that can be preserved except

for the two ones above.

If j = n = 0 we find that the supercharges Q2± and Q3± are preserved provided that

B(1 +m) +
√

2Am = 0 ,√
2B +m(A− C) = 0 .

(3.22)

However these two conditions (along with n = 0) imply that the 2nd term in (3.19) has van-

ishing coefficient and therefore Q1± and Q4± are also preserved! If m 6= 0 the general solu-

tion of that system yields the deforming operator (up to an overall multiplicative constant)

(m+ 1)Φsl
0;m+1K

− − 2mΦsl
0;mK

3 + (m− 1)Φsl
0;m−1K

+ , (3.23)

while for m = 0 we have the deforming operator

AΦsl
0;1K

− + CΦsl
0;−1K

+ . (3.24)

Fermions in the SU(2): let us consider now operators of the form

AΦsu
j;n+1Φ

sl
j;mψ

− +BΦsu
j;nΦ

sl
j;mψ

3 + CΦsu
j;n−1Φ

sl
j;mψ

+ . (3.25)

The purely bosonic piece of the deformation induced by this operator reads

AΦsu
j;n+1Φ

sl
j;mJ

− +
√

2BΦsu
j;nΦ

sl
j;mJ

3 + CΦsu
j;n−1Φ

sl
j;mJ

+ . (3.26)

The fermion bilinear terms are grouped again according to the bosonic primaries as follows:

(j + 1 −m)CΦsu
j;n−1Φ

sl
j;m−1ψ

+χ+ ,

(j + 1 −m)BΦsu
j;nΦ

sl
j;m−1ψ

3χ+ ,

(j + 1 −m)AΦsu
j;n+1Φ

sl
j;m−1ψ

−χ+ ,

Φsu
j;n−1Φ

sl
j;m

(√
2Cmψ+χ3 +

(
√

2C +B(j − n)
)

ψ+ψ3
)

,

Φsu
j;nΦ

sl
j;m

(

(
√

2B +A(1 + j + n) − C(1 + j − n)
)

ψ+ψ− +
√

2Bmψ3χ3
)

, (3.27)

Φsu
j;n+1Φ

sl
j;m

(√
2Amψ−χ3 +

(

B(j − n) −
√

2An
)

ψ−ψ3
)

,

(j + 1 +m)CΦsu
j;n−1Φ

sl
j;m+1ψ

+χ− ,

(j + 1 +m)BΦsu
j;nΦ

sl
j;m+1ψ

3χ− ,

(j + 1 +m)AΦsu
j;n+1Φ

sl
j;m+1ψ

−χ− .

It is straightforward to check that Φsu
j;jΦ

sl
j;mψ

+ and Φsu
j;−jΦ

sl
j;mψ

− preserve half of the original

supercharges, that is (Q3±, Q4±) and (Q1±, Q2±), respectively. Furthermore, the operators

Φsl
0;±1ψ

3 preserve the supercharges Q1,±, Q4± for m = 1 and Q2,±, Q3± for m = −1. No

other combinations of supercharges can be preserved. We should emphasize that in the

general analysis above we take the SL(2,R) primaries in the normalizable branch.

All these operators contain the chiral/antichiral primaries found previously but in gen-

eral there are by far more 1/2-BPS operators. It can be checked that these extra operators
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lead to deformations that do not preserve the original N = 2 SCFT symmetry.6 As a

rule, the charge of the WZW primary that comes from the same model as the fermion

is fixed while the other primary has arbitrary charge. We should also mention that al-

though the marginal deformations originating from chiral primaries can be argued to be

exactly marginal, this is not possible for the deformations coming from the above oper-

ators (although that does not necessarily imply that these deformations are not exactly

marginal). Note also that our operators do not match, in general, the operators of [10],

where A,B,C are fixed in terms of Clebsch-Gordan coefficients, except when one of the

states is at the boundary of the representation space and two out of the three Clebsch-

Gordan coefficients vanish.

A mixed operator: let us finally check the operator Φsl
j;m(ψ3 −χ3). It is chiral primary

for j = −1,m = 0 (when Φsl
−1;0 ≡ 1) and then corresponds to a non-normalizable deforma-

tion. It makes also sense as a seed operator if j = 0 and m = −1 so that it gives rise to a

marginal normalizable deformation. The bosonic piece of this deformation reads

Φsl
j;m(J3 −K3) , (3.28)

while the fermionic one is given by the sum of the following terms

(1 + j −m)Φsl
j;m−1(ψ

3χ+ + χ+χ3) ,

Φsl
j;m(χ+χ− −mψ3χ3 − ψ+ψ−) , (3.29)

(1 + j +m)Φsl
j;m+1(ψ

3χ− + χ−χ3) .

The term in the second line implies that ǫ2 +mǫ3 − ǫ1 = 0, which is not possible to satisfy

for m = −1. For m = 0, this condition becomes ǫ1 = ǫ2 which is satisfied only for the

supercharges Q1± and Q3±. Then, using also j = −1 we see that the terms in the first

and third lines in (3.30) are vanishing as well. Hence, we have a 1/2 BPS deformation,

which however is non-normalizable. One could further consider more general combinations

of operators with fermions from both WZW models, however it turns out that they do not

lead to other supersymmetric operators besides the one we found above.

Summary: to summarize, we have found the following classes of seed operators that

yield 1/2 BPS deformations in spacetime:

Φsu
j;nΦ

sl
j;∓j∓1χ

± , j 6= 0 , Φsu
j;±jΦ

sl
j;mψ

± , Φsl
0;±1ψ

3 , ψ3 − χ3 . (3.30)

In addition, the following operators yields deformations that do not break

any supersymmetry:

(m+ 1)Φsl
0;m+1χ

− −
√

2mΦsl
0;mχ

3 + (m− 1)Φsl
0;m−1χ

+ , m 6= 0 (3.31)

and

AΦsl
0;1χ

− + CΦsl
0;−1χ

+ . (3.32)

Finally, let us mention that none of the operators we have studied so far can preserve only

1/4 of the original supersymmetry.

6 Notice that in order to have an N = 2 preserving deformation it is sufficient but not necessary that

the seed operator is chiral or antichiral primary.
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3.4 Brane interpretation and comments

All geometric deformations of the pointlike brane system are captured by the ansatz (2.1)

with the functions H1 and H5 depending on the common transverse space, i.e. on the radial

coordinate ρ as well as on the SU(2) coordinates. Therefore, from the set of spacetime

supersymmetric operators we uncovered in the previous subsection only a subclass can

be given an interpretation in terms of a deformed brane system. This is the subclass

whose SL(2,R) primary depends only on ρ and which involves only the K+, K̄+ currents.

Otherwise it is easy to see, using the formulas from the appendix B, that the deformation

will depend also on the coordinates x±, therefore loosing its brane description. Hence, the

operators that could a priori correspond to geometric deformations of the brane system are

Φsu
j;n,n̄Φ

sl
j;−j−1,−j−1χ

+χ̄+ , j 6= 0, Φsu
j;±j,±jΦ

sl
j;−j−1,−j−1ψ

±ψ̄± , Φsl
0;−1,−1ψ

3ψ̄3 ,

(3.33)

where we reinstalled the anti-holomorphic indices for concreteness.

Notice that the only maximally supersymmetric operator that has the right form to

yield a brane deformation is Φsl
0;−1,−1χ

+χ̄+ ∼ e2ρ∂x+∂̄x− and therefore it trivially corre-

sponds to an overall rescaling of the coordinates x±. This is consistent as there are no

deformations of the original F1-NS5-brane system that preserve its total supersymmetry.

The rest of the operators that preserve the full supersymmetry correspond to diffeomor-

phisms of the AdS3 metric, as can be verified by computing the scalar curvature of the

deformed metric, and therefore they have a trivial physical effect.

We see now that Φsl
0;−1,−1J

3J̄3 and Φsu
1;0,0Φ

sl
1;−2,−2 K

+K̄+, which appear when we put

the branes on circles, are accounted for by the third and first operators of the above list,

respectively. It is also important that these two classes of operators preserve the same

set of supercharges, that is Q2± and Q3±, so that the combined deformation is still su-

persymmetric as it should. The same is true for the operators Φsu
1;1,1Φ

sl
1;−2,−2 K

+K̄+ and

Φsu
1;−1,−1Φ

sl
1;−2,−2 K

+K̄+ that describe an elliptical deformation of the F1-branes. We no-

tice now that from the supergravity point of view all deformations preserve the same set

of supercharges, since the form of the Killing spinors is not related to the actual expres-

sions for the harmonic functions H1 and H5, and therefore the operators that yield brane

deformations should be only those commuting with the supercharges Q2± and Q3± that

are preserved by the circular and elliptical deformation. Therefore out of (3.33) we should

further restrict only to the operators

Φsu
j;n,n̄Φ

sl
j;−j−1,−j−1χ

+χ̄+ , j 6= 0 , Φsl
0;−1,−1ψ

3ψ̄3 . (3.34)

It is a bit surprising that Φsu
j;±j,±jΦ

sl
j;−j−1,−j−1ψ

±ψ̄± have to be excluded since similar

operators in [9], containing linear dilaton vertex operators instead of SL(2,R) primaries,

where argued to account for the geometric deformations of the pointlike NS5-brane sys-

tem (along with the analogue of Φsl
0;−1,−1ψ

3ψ̄3 that describes the circular deformation).

However, besides the fact that Φsu
j;±j,±jΦ

sl
j;−j−1,−j−1ψ

±ψ̄± do not preserve the same set

of supercharges as Φsl
0;−1,−1ψ

3ψ̄3 , we cannot use them in any case to construct a real

deformation that preserves supersymmetry.
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The reason is that we cannot construct a real operator by using only the currents J+

and J̄+ and, on the other hand, operators with ψ+ and its complex conjugate ψ− preserve

complementary sets of supercharges, i.e. (Q3±, Q4±) and (Q1±, Q2±) respectively, as we

have already seen. Therefore, we cannot construct a real supersymmetric deformation

using these operators. Two observations are now in order. First, this problem does not

arise when we use the SL(2,R) fermions χ+, χ̄+ because the currents K+, K̄+ combine by

themselves to a real operator. Second, this issue did not also arise in the setup of [9] because

the analogues of Φsu
j;±j,±jΦ

sl
j;−j−1,−j−1ψ

±ψ̄± preserve the full amount of supersymmetry (16

supercharges) of the original undeformed NS5-brane configuration.

We would like to close this section with a final remark related to the fact that the levels

of both WZW models are identified with the number of NS5-branes N5. As a consequence,

the number of operators in the first expression in (3.33) — i.e. those who survive the reality

condition and truly generate supersymmetric deformations — scales approximately as N3
5 .

From the brane point of view we would have expected 4(N1 +N5) possible deformations,

since we can move all branes arbitrarily. It is not clear to us how this discrepancy should be

interpreted (and eventually fixed), since the weak-string-coupling regime that guaranties

the validity of the CFT analysis demands N1 ≫ N5 (see (2.13)), which sets no order

between N3
5 and 4(N1 +N5).

4 More operators in the SL(2, R) × SU(2) × T
4 theory

A large class of operators that give rise to marginal deformations consists of bosonic pri-

maries of the above models with vanishing total conformal weight along with a fermion, so

that the overall conformal weight is h = 1/2. The simplest and most natural construction

involves two primaries. Therefore we have the following two classes of operators. Either

we use (3.13), that is

First class : Φsl
j;mΦsu

j;nY (4.1)

or

Second class : Φsl
j;me

ipaY aY , (4.2)

where Y denotes a fermion in one of the WZW models or in the 4-torus and Y a, a = 1, 2, 3, 4

are free bosons describing the 4-torus. We will also use the complex combinations Ŷ ± =

Y 1 ± iY 2 and Ỹ ± = Y 3 ± iY 4 in the construction of the N = 2 superconformal algebra

in appendix C. The condition j(j+1)
k − 1

2

∑

a p
2
a = 0 should hold (we consider for simplicity

only momentum modes on the 4-torus) so that the second class of operators have conformal

weight h = 1/2. Notice that the momenta pa are quantized since the coordinates Y a are

compact but j is an arbitrary real number in the range

− 1

2
6 j 6

k − 1

2
. (4.3)

4.1 First class

Operators in the first class with the fermion Y being either in the SL(2,R) or the SU(2)

part of the theory were studied in the previous section and we saw that several of them
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can lead to deformations that preserve one-half of the original spacetime supersymmetry.

For this to happen the charge n or m from the WZW model, where Y belongs, has to be

fixed appropriately with respect to j. Furthermore, some of these operators correspond to

geometric deformations of the F1-NS5-brane system similar to those studied in [7].

The operators (4.1) involving fermions from the 4-torus give rise to deformations of the

moduli of the torus which, in general, will depend on the SL(2,R) and SU(2) coordinates

through the corresponding affine primaries. We still have to check if any of those give rise

to supersymmetric deformations but since the form of these deformations is not consistent

with the general ansatz (2.1), we expect that none of those can preserve any supersymmetry.

It is an interesting exercise to see how this happens.

Let us start from the seed operator

Φsl
j;mΦsu

j;nλ̂
+ , (4.4)

where we consider a specific complex fermion from the 4-torus (obviously the analysis is

similar for all other 4-torus fermions). The deforming operator then reads

Φsl
j;mΦsu

j;n∂Ŷ
+ , (4.5)

The associated fermion bilinears and the supercharges that commute with them are

−(1 + j −m)Φsl
j;m−1Φ

su
j;nχ

+λ̂+ , Q1+ , Q2± , Q3± , Q4+ ,

(j + n)Φsl
j;mΦsu

j;n−1ψ
+λ̂+ , Q1+ , Q2+ , Q3± , Q4± ,

−
√

2mΦsl
j;mΦsu

j;nχ
3λ̂+ , Q1+ , Q2+ , Q3+ , Q4+ ,√

2nΦsl
j;mΦsu

j;nψ
3λ̂+ , Q1+ , Q2+ , Q3+ , Q4+ ,

(j − n)Φsl
j;mΦsu

j;n+1ψ
−λ̂+ , Q1± , Q2± , Q3+ , Q4+ ,

(1 + j +m)Φsl
j;m+1Φ

su
j;nχ

−λ̂+ , Q1± , Q2+ , Q3+ , Q4± .

(4.6)

We notice that there is a common set of 4 commuting supercharges Qi+, i = 1, . . . , 4 and

that therefore these operators preserve 1/2 of the original supersymmetry. However, in or-

der to get a real deformation we should add the complex conjugates of the above deforming

operators, which, as it can be easily seen, preserve the complementary set Qi−, i = 1, . . . , 4.

Therefore, there are no (real) supersymmetric deformations of this type, in accord with

the fact that they are not expected from the supergravity analysis. It is also elementary to

show that the usual moduli deformation of the torus, i.e. of the form ∂Ŷ +∂̄Ŷ −±∂Ŷ −∂̄Ŷ +,

commute with all supercharges as they should.

4.2 Second class

The second class of operators, which contain a primary from the 4-torus, leads also to 1/2

BPS deformations when Y is a fermion from the SL(2,R) model. In particular, the following

operators yield deformations preserving 8 supercharges (including the holomorphic and

antiholomorphic sectors): Φsl
j;∓j∓1e

ipaY a
χ±. The corresponding deformations contain the

null currents of the SL(2,R) WZW model and hence they reflect a situation where the

harmonic function H1 in (2.1) depends on the coordinates ya of the 4-torus.
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Let us find out which supercharges can be preserved. We select as seed

Φsl
j;me

ipaY a

χ+ (4.7)

and we obtain the following 2-fermion terms in the associated deformation

abΦ
sl
j;me

ipaY a

λbχ+ ,√
2(1 +m)Φsl

j;me
ipaY a

χ+χ3 , (4.8)

−(1 + j +m)Φsl
j;me

ipaY a

χ+χ− .

Since no supercharges commute with the third term we have to set m = −1 − j. The

second term preserves Q2±, Q3± and these are also preserved by the first term as well, due

to the fact that they have ǫ2 = 1. Therefore we have a 1/2 BPS deformation. Similarly,

such operators with χ− preserve the complementary set Q1± and Q4± .

Brane configurations corresponding to deformations of the F1-NS5-brane system driven

by this type of operators were studied in [14], where it was shown that they are solutions

of the equations of motion and preserve 1/4 of the original supersymmetry provided that

the harmonic condition on H1 changes to

(

∂2
x +H5(x)∂

2
y

)

H1(x, y) = 0 . (4.9)

A simple class of solutions of that equation, with H5 being the standard near-horizon form

of the harmonic function on the transverse space H5 = 1/r2, can be found by assuming a

factorized form of H1(x, y) = f(x)g(y). We get two equations

r2
∂2
xf(x)

f(x)
= −

∂2
yg(y)

g(y)
= c . (4.10)

Since the coordinates yb parametrize 4-torus, the solution of the second equation are

of the form g(y) = eiaby
b

with the condition c =
∑

b a
2
b . Assuming furthermore that f(x)

depends only on the radial coordinate r yields

r2f ′′(r) + 3rf ′(r) − cf(r) = 0 , (4.11)

with solutions f(r) = r−1±
√

1+c. This solution is a deformation of the original harmonic

solution H1 = 1/r2. Recall that the latter corresponds to the F1-branes fully smeared on

the 4-torus. The deformation reflects a situation where some momentum modes on the

4-torus are condensed and have to be compensated by a change of the profile of the F1-

branes. This change of profile can be thought of as a deformation of the original smooth

instanton to which the smeared F1-branes correspond to. Therefore, these deformations

trigger infinitesimal motions in the instanton moduli space, the latter being the Higgs

branch of the F1-NS5-system.

The conformal field theory description of these deformations is provided by the opera-

tors Φsl
j;−j−1e

ipaY a
χ+ which preserve the supercharges Q2± and Q3±. These are exactly the

supercharges preserved by the operators corresponding to the circular and elliptical defor-

mation studied previously, in perfect agreement with the fact that the form of the Killing
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spinors does not depend on the explicit form of the functions H1 and H5, even if we use

the more general ansatz of [14]. The relation between the ab and c is the classical analogue

of the quantum relation between pb and j that results from the condition of conformal

invariance. We should mention that operators of this type have not been considered so far

in discussions of the AdS3/CFT2 duality and it would be very interesting to elucidate their

role in that context.

On the other side, it is not meaningful to give a y-dependence on the H5(x) harmonic

function since it would imply a dependence of the harmonic function describing the NS5-

branes on some of their worldvolume coordinates. Therefore, operators of the form (4.7) but

with a fermion in the SU(2) WZW model should not yield exactly marginal deformations.

Here we will restrict ourselves to showing that they cannot yield a real deformation that

preserves supersymmetry.

Taking as seed the operator

Φsl
j;me

ipaY a

ψ+ , (4.12)

yields the following fermion bilinears

abΦ
sl
j;me

ipaY a

λbψ+ ,

(1 + j −m)Φsl
j;m−1e

ipaY a

ψ+χ+ ,√
2(m− 1)Φsl

j;me
ipaY a

ψ+χ3 ,

−
√

2(1 + j +m)Φsl
j;m+1e

ipaY a

ψ+χ− .

(4.13)

All these terms preserve simultaneously the supercharges Q3± and Q4±. However, as was

the case with first class operators containing SU(2) fermions, in order to construct a real

deformation we should also add the complex conjugate operator that involves the fermion

ψ− and these preserve the complementary set of supercharges (Q1±, Q2±), as it can easily

be seen.

Finally, operators of the second class with a fermion from the 4-torus are excluded due

to the same reason we excluded operators of the type (4.4).
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A SU(2) conventions

We use the parametrization of the SU(2) matrix element employed in [7],
(

g̃++ g̃+−
g̃−+ g̃−−

)

=

(

cos θ eiφ sin θ eiτ

− sin θ e−iτ cos θ e−iφ

)

, (A.1)

to obtain the following semiclassical expression for the primaries

Φsu
j;j,j = g̃2j

++ , Φsu
j;−j,−j = g̃2j

−− , Φsu
j;j,−j = g̃2j

+− , Φsu
j;−j,j = g̃2j

−+ . (A.2)

The SU(2) primary Φsu
j;m,m̄ at level k − 2 has conformal weight

∆ =
j(j + 1)

k
, (A.3)

with j and m being half-integers in the ranges

0 6 j 6
k − 2

2
, −j 6 m 6 j . (A.4)

The left- and right-moving currents of the theory are given by

J1 = 2
(

sin(φ+ τ)∂θ + cos(φ+ τ) sin θ cos θ(∂τ − ∂φ)
)

,

J2 = 2
(

cos(φ+ τ)∂θ − sin(φ+ τ) sin θ cos θ(∂τ − ∂φ)
)

, (A.5)

J3 = 2
(

cos2 θ∂φ+ sin2 θ∂τ
)

,

and

J̄1 = −2
(

sin(φ− τ)∂̄θ + cos(φ− τ) sin θ cos θ(∂̄τ + ∂̄φ)
)

,

J̄2 = 2
(

cos(φ− τ)∂̄θ + sin(φ− τ) sin θ cos θ(∂̄τ + ∂̄φ)
)

, (A.6)

J̄3 = 2
(

cos2 θ∂̄φ− sin2 θ∂̄τ
)

.

The action of the SU(2) affine currents J3, J± = J1 ± iJ2 on a primary field Φsu
j;m,m̄ is

given by the OPEs

J3(z)Φsu
j;m,m̄(w, w̄) =

m

z − w
Φsu
j;m,m̄(w, w̄) ,

J±(z)Φsu
j;m,m̄(w, w̄) =

j ∓m

z − w
Φsu
j;m±1,m̄(w, w̄) .

(A.7)

The bosonic current algebra reads

J3(z)J3(w) ∼ k − 2

2

1

(z − w)2
,

J3(z)J±(w) ∼ ±J
±(w)

z − w
,

J+(z)J−(w) ∼ k

(z − w)2
+

2J3(w)

z −w
,

(A.8)

at level k − 2. The corresponding fermions satisfy

ψ3(z)ψ3(w) ∼ 1

z − w
,

ψ+(z)ψ−(w) ∼ 1

z − w
.

(A.9)
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B SL(2, R) conventions

A two-dimensional matrix realization of the SL(2,R) algebra is given in terms of Pauli

matrices as follows:

k1 =
i

2
σ2 , k2 = − i

2
σ1 , k3 =

1

2
σ3 . (B.1)

These matrices satisfy the SL(2,R) commutation relations

[

k1, k2
]

= −ik3 ,
[

k2, k3
]

= ik1 ,
[

k3, k1
]

= ik2 , (B.2)

and therefore k± = k1 ± ik2 and k3 satisfy

[

k3, k+
]

= k+ ,
[

k3, k−
]

= −k− ,
[

k+, k−
]

= −2k3 , (B.3)

which is the form of the SL(2,R) we employ in the construction of the N = 2 superconfor-

mal algebra.

We will parametrize the matrix element of SL(2,R) as

g =

(

eρ eρx+

eρx− e−ρ + x+x−eρ

)

=

(

g++ g+−
g−+ g−−

)

. (B.4)

The right-invariant 1-forms are jaR = −itr(dgg−1ka) and they read

j1R = − i

2

(

dx− + 2x−dr − e2ρ
(

1 + (x−)2
)

dx+
)

,

j2R = −1

2

(

dx− + 2x−dr + e2ρ
(

1 − (x−)2
)

dx+
)

, (B.5)

j3R = i(e2ρx−dx+ − dr) ,

while the left-invariant 1-forms jaL = −itr(g−1dgka) read

j1L =
i

2

(

dx+ + 2x+dr − e2ρ
(

1 + (x+)2
)

dx−
)

,

j2L = −1

2
(dx+ + 2x+dr + e2ρ

(

1 − (x+)2
)

dx−
)

, (B.6)

j3L = i(e2ρx+dx− − dr) .

The Cartan-Killing metric ds2CK = (j1R)2 + (j2R)2 − (j3R)2 = (j1L)2 + (j2L)2 − (j3L)2 is

ds2 = dρ2 + e2ρdx+dx− . (B.7)

Consequently, the left- and right-moving currents of the WZW model are

K1 = − i

2

(

∂x− + 2x−∂ρ− e2ρ
(

1 + (x−)2
)

∂x+
)

,

K2 = −1

2

(

∂x− + 2x−∂ρ+ e2ρ
(

1 − (x−)2
)

∂x+
)

, (B.8)

K3 = i(e2ρx−∂x+ − ∂ρ) ,
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and

K̄1 =
i

2

(

∂̄x+ + 2x+∂̄ρ− e2ρ
(

1 + (x+)2
)

∂̄x−
)

,

K̄2 = −1

2
(∂̄x+ + 2x+∂̄ρ+ e2ρ

(

1 − (x+)2
)

∂̄x−
)

, (B.9)

K̄3 = i(e2ρx+∂̄x− − ∂̄ρ) ,

respectively.

Now we can identify the charges of the combinations K1 ± iK2 by using the Killing

vector fields jiR, and jiL dual to the forms jiR, and jiL. It turns out that

[j3R, j1R ± ij2R] = ∓2i(j1R ± ij2R) ,

[j3L, j1L ± ij2L] = ±2i(j1L ± ij2L) .
(B.10)

Therefore, to be consistent with the way we picked up the charges of the SL(2,R) currents

in our construction of the N = 2 SCFT algebra in appendix C, we should define K± =

K1 ∓ iK2 and K̄± = K̄1 ± iK̄2. We have

K+ = ie2ρ∂x+, K− = −i
(

∂x− + 2x−∂ρ− e2ρ(x−)2∂x+
)

, (B.11)

and

K̄+ = −ie2ρ∂̄x−, K̄− = i
(

∂̄x+ + 2x+∂̄ρ− e2ρ(x+)2∂̄x−
)

. (B.12)

Hence one obtains the following useful relation

∂x+∂̄x− = Φsl
1;−2,−2K

+K̄+ , (B.13)

where we used the semiclassical expressions for the SL(2,R) primaries

Φsl
j;j+1,j+1 =

1

g
2(j+1)
−−

, Φsl
j;−j−1,−j−1 =

1

g
2(j+1)
++

,

Φsl
j;j+1,−j−1 =

1

g
2(j+1)
−+

, Φsl
j;−j−1,j+1 =

1

g
2(j+1)
+−

.
(B.14)

Notice that we use conventions where the SL(2,R) primary Φsl
j;m,m̄ at level k + 2 has

conformal weight

∆ = −j(j + 1)

k
. (B.15)

We consider only the principal discrete series for which j is a real number, since we actually

consider the universal cover of SL(2,R) in order to avoid any closed timelike curves, in

the range

− 1

2
6 j 6

k − 1

2
, (B.16)

and m takes either the values m = −j − j,−j − 2, . . . or m = j + 1, j + 2, . . ..

The action of the SL(2,R) affine currents K3,K± on a primary field Φsl
j;m,m̄ is given

by the OPEs

K3(z)Φsl
j;m,m̄(w, w̄) =

m

z − w
Φsl
j;m,m̄(w, w̄) ,

K±(z)Φsl
j;m,m̄(w, w̄) =

m± (j + 1)

z − w
Φsl
j;m±1,m̄(w, w̄) .

(B.17)
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The bosonic current algebra at level k + 2 reads

K3(z)K3(w) ∼ −k + 2

2

1

(z − w)2
,

K3(z)K±(w) ∼ ±K±(w)

(z − w)
,

K+(z)K−(w) ∼ k + 2

(z − w)2
− 2

K3(w)

z − w
,

(B.18)

while the corresponding fermions satisfy

χ3(z)χ3(w) ∼ − 1

z −w
,

χ+(z)χ−(w) ∼ 1

z − w
.

(B.19)

C The N = 2 superconformal algebra

We present here a realization of the N = 2 superconformal algebra in the SL(2,R)×SU(2)×
U(1)4 worldsheet theory. The energy-momentum tensor reads

T =
1

k

[

J3J3 +
1

2

(

J+J− + J−J+
)

−K3K3 +
1

2

(

K+K− +K−K+
)

]

+
1

2

4
∑

a=1

∂Y a∂Y a

−1

2

[

ψ+∂ψ− + ψ−∂ψ+ + ψ3∂ψ3 + χ+∂χ− + χ−∂χ+ − χ3∂χ3 +

4
∑

a=1

λa∂λa

]

, (C.1)

while the N = 2 supercurrents take the form

G+ =
1√
k

[

(

J3
T +K3

T

) (

ψ3 − χ3
)

+
√

2
(

J+ψ− +K−χ+
)

]

+ λ̂+∂Ŷ − + λ̃+∂Ỹ − ,

G− =
1√
k

[

(

J3
T −K3

T

) (

ψ3 + χ3
)

+
√

2
(

J−ψ+ +K+χ−)
]

+ λ̂−∂Ŷ + + λ̃−∂Ỹ + .
(C.2)

The U(1) R-charge current reads

JR =
2

k

(

J3
T +K3

T

)

− ψ+ψ− + χ+χ− + ψ3χ3 + λ̂+λ̂− + λ̃+λ̃− , (C.3)

where we have introduced the total SU(2) and SL(2,R) currents

J3
T = J3 + ψ+ψ− , K3

T = K3 + χ+χ− . (C.4)

Due to the presence of a time-like direction in the interacting non-linear sigma-model,

the above generators turn out to be non-hermitian: the usual complex conjugation between

G+ and G− does not hold.
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